Jumat, 25 Januari 2008

Algoritma Genetik

Algoritma genetika yang dikembangkan oleh Goldberg adalah algoritma komputasi yang diinspirasi teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi aturan “survival of the fittest” yang berarti bahwa yang kuat yang dapat bertahan hidup. Konsep dalam teori evolusi Darwin tersebut kemudian diadopsi menjadi algoritma komputasi untuk mencari solusi suatu permasalahan dengan cara yang lebih “alamiah”.

Sebuah solusi yang dibangkitkan dalam algoritma genetika disebut sebagai kromosom, sedangkan kumpulan kromosom-kromosom tersebut disebut sebagai populasi. Sebuah kromosom dibentuk dari komponen-komponen penyusun yang disebut sebagai gen dan nilainya dapat berupa bilangan numerik, biner, simbol ataupun karakter tergantung dari permasalahan yang ingin diselesaikan. Kromosom-kromosom tersebut akan berevolusi secara berkelanjutan yang disebut dengan generasi. Dalam tiap generasi kromosom-kromosom tersebut dievaluasi tingkat keberhasilan nilai solusinya terhadap masalah yang ingin diselesaikan (fungsi objektif) menggunakan ukuran yang disebut dengan fitness. Untuk memilih kromosom yang tetap dipertahankan untuk generasi selanjutnya dilakukan proses yang disebut dengan seleksi. Proses seleksi kromosom menggunakan konsep aturan evolusi Darwin yang telah disebutkan sebelumnya yaitu kromosom yang mempunyai nilai fitness tinggi akan memiliki peluang lebih besar untuk terpilih lagi pada generasi selanjutnya.

Kromosom-kromosom baru yang disebut dengan offspring, dibentuk dengan cara melakukan perkawinan antar kromosom-kromosom dalam satu generasi yang disebut sebagai proses crossoveratau tukar silang. Jumlah kromosom dalam populasi yang mengalami crossover ditetukan oleh paramater yang disebut dengan crossover rate. Mekanisme perubahan susunan unsur penyusun mahkluk hidup akibat adanya faktor alam yang disebut dengan mutasi direpresentasikan sebagai proses berubahnya satu atau lebih nilai gen dalam kromosom dengan suatu nilai acak. Jumlah gen dalam populasi yang mengalami mutasi ditentukan oleh parameter yang dinamakan mutation rate. Setelah beberapa generasi akan dihasilkan kromosom-kromosom yang nilai gen-gennya konvergen ke suatu nilai tertentu yang merupakan solusi terbaik yang dihasilkan oleh algoritma genetika terhadap permasalahan yang ingin diselesaikan.


Copyright © 2003-2007 IlmuKomputer.Com



Gambar 1. Single Point Crossover




Gambar 2. Mutasi





Tidak ada komentar: